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Abstract

Background: Human influenza is characterized by seasonal epidemics, caused by rapid viral adaptation to
population immunity. Vaccination against influenza must be updated annually, following surveillance of newly
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decreasing the number of hosts in which the virus may
replicate.





States labelled with I denote symptomatic infection,
and those labelled with A denote asymptomatic infection.
The P states describe immunity to one strain but not the
other: Pj is the state with immunity to strain j (j = 1, 2),
and R the state with immunity to both strains. In this
model, we exclude co-infection: at any given time, an
individual may be infected with at most one strain. State
Ij denotes infection with strain j; and Ijk denotes previous
infection with (and subsequent recovery from) strain j
and current infection with strain k (where k ≠ j). A simi-
lar notation applies to the A-classes. The efficacy of the
vaccine against strain j is denoted by sj.

Subscript ‘V’ denotes states of infection (or partial
recovery) arising from failure of the vaccine; and as
before, labels states with infection due to, or partial
recovery from, one of the strains. Following vaccination,
infection due to strain j occurs with probability (1-sj). In
general, for seasonal influenza, the vaccine is targeted
against the earlier-occurring strain 1 virus; its efficacy
against the later-occurring strain 2 (mutated) virus is
expected to be less, i.e., s2 < s1. As in [6], the delay T* in
appearance of strain 2 in the population is a parameter of
the model.

In Figure 1, the diverging pairs of directed edges are



then using the above expressions for b and R0 we derive
τ = 3.5 d-1 for the transmission rate to be used in the
simulations. The value of R0 corresponding to this τ in
the absence of vaccination is R0 = 2.34.

In keeping with the definition of the two age class
model (see Appendix), the estimates of death rates
[18,19] arising from symptomatic or asymptomatic
infection (d, dA, respectively) for the two age-class
model correspond to the general population above and
below the median of the age distribution Pa which, for
the city of Vancouver, is about 38 years [20]. We
assume that the death rates due to natural causes are
negligible, and choose nominal values for the disease-
induced rates: d(a1) = d(a2) = 0.002 d-1 (Ref.[10]). These
rates vary with the particular circulating influenza
strains. Furthermore, we set d = dA in this illustrative
study.

In the model described above, the total number of
individuals Nk,a in each (k,a) class is fixed, and hence
the total population N (summed over all (k,a) classes) is
constant. Therefore, by dividing the number of indivi-
duals in class (k,a) in state X at any given time by N, we
may express the model in terms of the probability Xk,a

(t) that a randomly chosen individual is in state X, and
belongs to class (k,a), at time t. The resulting set of
ordinary differential equations describing this determi-
nistic model is given in the Appendix.

Results
The initial state was specified as follows. For pre-vaccina-
tion, a prescribed fraction V0(a) of individuals in each age
class a receive vaccination. Infection by strain 1 is intro-
duced into fraction ε1



of 5 for the mean field model, and a factor of 10 for the
one age class network model. Again, this may be
accounted for by the reduced transmissibility between
different age classes. Notice also that, as in Figure 2, the
two age class model exhibits a single peak of infection
for both levels of vaccination.

In Figure 4, the two age class network model is used
to explore the effects of vaccination during an epidemic

outbreak, with no vaccination prior to the initial appear-
ance of strain 1 infection, where vaccination rates are
determined according to the “social response” to total



infection when T* = 10 days and δ = 0.4 (top left in
Figure 4), there is only one peak of infection which
occurs consistently at very similar times (50 days after





thereafter. Thus, for the parameter values used, it appears
that vaccination is most effective around these values, with
diminishing returns for higher V0. Tables 6, 7 show that
death rates due to pre-vaccination are lower than pre-
dicted for the entire range of vaccination rates during an
epidemic; and in both cases the death rates decrease with
increasing levels of vaccination. Analogous to the attack
rates, there is a small increase in mortality for vaccination
coverage around 20%, due to increased numbers of strain
2 infections at the expense of reduced numbers of strain 1
infections; however, the mortality rate drops sharply once



drop off sharply for higher coverage levels. This phe-
nomenon is reminiscent of the development of drug
resistance, where there is an optimal level of drug treat-
ment (compare: vaccination coverage) that minimizes
the overall infection [10]. This could have significant
implications for vaccination strategies in realistic models
of populations in which more than one strain is
circulating.

It was found that increasing either pre-vaccination or
vaccination during an outbreak, reduces the disease-
induced mortality. Furthermore, pre-vaccination appears
to be more effective than vaccination during an out-
break in reducing overall mortality, though this needs
further investigation as it may depend critically on how
the latter is implemented. This study considered only a
simple model in which at any given time vaccination
rates during an outbreak were governed by the total
infection in the population at that time, and considers
only vaccination of the susceptible class S, neglecting
vaccination of other classes (e.g., P1 and P2 and asymp-
tomatic cases).

As mentioned earlier, the particular form of the terms
included in the model to incorporate local network
structure and the effects of age classes was chosen for
illustrative purposes. This approach, though, can be
used on a specific population if sufficient data are

available to determine realistic estimates of the age
classes and network structure present and of the para-
meters of the model. The main difficulty is in determin-
ing the form of the two-point correlations between
vertices of the contact network for a realistic particular
population, and this must be derived indirectly from
estimates of network structure extracted from the data
[16]. An intermediate approach is to explore the effects
of a few network structure parameters – e.g., clustering,
associativity, betweenness, and centrality [7,16], obtain-
ing expressions for the two-point probabilities defining
the Markov network directly in terms of these para-
meters. This is currently under investigation.

Appendix: Effects of vaccination and population
structure on influenza epidemic spread in the
presence of two circulating strains
The various parameters in the model (Figure 1 of main
text) are defined below:
τ = baseline transmission rate between a susceptible-

infected pair
p = probability of developing symptomatic infection

with no prior exposure
pV1, pV2 = probabilities of pre-vaccinated individuals

developing symptomatic infection from strains 1 and 2,
respectively, with no prior exposure
s1, s2 = effectiveness of vaccine to strains 1 and 2,

respectively
δV1, δV2 = reduction in transmissibility of strains 1 and

2, respectively, for vaccinated individuals
p12 = probability of developing symptomatic infection

with prior exposure to strain 1
pV12 = probability of pre-vaccinated individuals devel-



for U Î {A1, AV1,I1, IV1,A21, AV21,I21, IV21, A2, AV2, I2,
IV2, A12, AV12, I12, IV12}, denote the force of infection for
age-class a and degree-class k. Here, M(a,a′) denotes the
relative transmission coefficient between age-groups, so
that τM(a,a′) = transmission coefficient between a sus-
ceptible individual of age-class a in contact with an
infected individual of age-class a′. Also, P(k′,a′|k,a) is
the probability that an individual (node) of age-class a
and degree-class k has a neighbour (adjacent node) of
age-class a′ and degree-class k′.

In the special case that the contact network is the
same for all age-classes, P(k′,a′|k,a) = Pa(a′|a)P(k′|k),
where Pa ( a′|a) denotes the probability that an age-
class a individual has an age-class a′ neighbour. The two
conditional distributions obey the conditions
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node-degrees are uncorrelated, then P(k′|k) = Pe(k′),
where Pe(k) is the edge distribution [22], defined as
the probability of randomly drawing an edge con-
nected to a vertex of degree k. It is related to P(k), the
vertex distribution, by P k kP k ke ( ) = ( ) / Similarly, if
the age distributions are uncorrelated, then Pa(a′|a) =
Pa(a′). Thus, for uncorrelated age-structured networks,
which are considered in this paper, P(k′,a′|k,a) = Pa(a
′)Pe(k′). In the present study, the degree distribution
follows a scale-free form [7] P(k) ~ k- k
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Using this approximate relationship enables us to
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